24 research outputs found

    Sequences within the Spinach curly top virus virion sense promoter are necessary for vascular-specific expression of virion sense genes

    Get PDF
    AbstractSequences necessary for activity of the Spinach curly top virus virion sense promoter have been identified within an 84 bp region upstream of two transcription start sites located at nt 252 and 292. RNAs initiating at these sites are expressed at equivalent levels in SCTV-infected Arabidopsis and from promoter-reporter constructs. The promoter is capable of directing expression of all three virion sense genes, although not to the same degree. While CP and V3 expression are similar, expression of V2 is elevated. The promoter is active in transient leaf infusion assays in the absence of C2. In Nicotiana benthamiana plants the promoter is active in vascular tissue and under no conditions did we detect promoter activity in the mesophyll. This is in contrast to begomoviruses where the virion sense promoter is dependent on AL2, a positional homolog of C2, and the promoter is functional in both vascular and mesophyll tissue

    Plants Expressing Tomato Golden Mosaic Virus AL2 or Beet Curly Top Virus L2 Transgenes Show Enhanced Susceptibility to Infection by DNA and RNA Viruses

    Get PDF
    AbstractThe AL2 gene of the geminivirus tomato golden mosaic virus (TGMV) encodes a transcriptional activator protein (TrAP) that is required for efficient expression of the viral coat protein (CP) and BR1 gene promoters. In contrast, L2, the positional homolog of AL2 in the related beet curly top virus (BCTV), is not required for CP expression, raising questions about the functional relationship between the AL2 and L2 gene products. In this study, transgenic Nicotiana benthamiana and N. tabacum var. Samsun plants expressing a truncated AL2 gene (AL21–100, lacking the activation domain) or full-length L2 were prepared. These transgenic plants showed a novel enhanced susceptibility (ES) phenotype following inoculation with TGMV, BCTV, or tobacco mosaic virus (TMV), an unrelated RNA virus. ES is characterized by a reduction in the mean latent period (from 1 to 9 days) and by a decrease in the inoculum concentration required to infect transgenic plants (ID50 reduced 6- to 60-fold). However, ES does not result in an enhancement of disease symptoms, and viral nucleic acids do not accumulate to substantially greater levels in infected transgenic plants. That both viral transgenes condition ES suggests that their products share the ability to suppress a host stress or defense response that acts against DNA and RNA viruses. The data further indicate that the transcriptional activation activity of AL2 protein is not required for suppression. The nature of the response targeted by the AL2 and L2 gene products is discussed

    Regulation of a Geminivirus Coat Protein Promoter by AL2 Protein (TrAP): Evidence for Activation and Derepression Mechanisms

    Get PDF
    AbstractTomato golden mosaic virus (TGMV) is a bipartite member of the subgroup III Geminiviridae. Like all geminiviruses, TGMV replicates in the nucleus of susceptible cells by rolling circle replication (RCR). Double-stranded replicative form DNA generated during RCR serves as template for the transcription of viral genes by RNA polymerase II and the associated cellular transcription machinery. Previous studies in tobacco protoplasts andNicotiana benthamianaleaf discs have shown that the viralAL2gene product transactivates expression of the coat protein (CP) andBR1movement protein genes, and that activation occurs at the level of transcription. Because of its function and properties, we propose the name TrAP, transcriptional activator protein, for theAL2gene product. Using transgenes consisting of complete and truncated versions of theCPpromoter fused to the GUS reporter gene, we show in the studies presented here that TrAP is required forCPgene expression in both mesophyll and phloem tissues. Surprisingly, TrAP appears to induceCPexpression by different mechanisms in different cell types: it may activate theCPpromoter in mesophyll cells, and acts to derepress the promoter in phloem tissue. In addition, TrAP is clearly capable of inducing the expression of responsive chromosomal promoters and could, in principle, activate host genes. Distinct viral sequence elements mediate expression and derepression in phloem and activation in mesophyll, suggesting that TrAP interacts with different components of the cellular transcription machinery to accomplishCPgene expression in different cell types, and underscoring the intricacy and complexity of virus–host interactions

    Spinach curly top virus: A Newly Described \u3ci\u3eCurtovirus\u3c/i\u3e Species from Southwest Texas with Incongruent Gene Phylogenies

    Get PDF
    A curtovirus associated with a disease of spinach was isolated in southwest Texas during 1996. Disease symptoms included severe stunting and chlorosis, with younger leaves curled, distorted, and dwarfed. Viral DNA was purified and an infectious clone obtained. Agroinoculation using a construct bearing full-length tandem repeats of the cloned viral genome resulted in systemic infection of species in six of seven plant families tested, indicating that the virus has a wide host range. Symptoms produced in spinach agroinoculated with cloned viral DNA were similar to those observed in the field. Viral single-stranded and double-stranded DNA forms typical of curtovirus infection were detected in host plants by Southern blot hybridization. The complete sequence of the infectious clone comprised 2,925 nucleotides, with seven open reading frames encoding proteins homologous to those of other curtoviruses. Complete genome comparisons revealed that the spinach curtovirus shared 64.2 to 83.9% nucleotide sequence identity relative to four previously characterized curtovirus species: Beet curly top virus, Beet severe curly top virus, Beet mild curly top virus, and Hor.semdi.sh curly top virus. Phylogenetic analysis of individual open reading frames indicated that the evolutionary history of the three virion-sense genes was different from that of the four complementary-sense genes, suggesting that recombination among curtoviruses may have occurred. Collectively, these results indicate that the spinach curtovirus characterized here represents a newly described species of the genus Curtovirus, for which we propose the name Spinach curly top virus

    Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation.

    Full text link
    peer reviewedKEY MESSAGE: Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression

    Systematic identification of functional modules and cis-regulatory elements in Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several large-scale gene co-expression networks have been constructed successfully for predicting gene functional modules and cis-regulatory elements in Arabidopsis (<it>Arabidopsis thaliana</it>)<it>.</it> However, these networks are usually constructed and analyzed in an <it>ad hoc</it> manner. In this study, we propose a completely parameter-free and systematic method for constructing gene co-expression networks and predicting functional modules as well as cis-regulatory elements.</p> <p>Results</p> <p>Our novel method consists of an automated network construction algorithm, a parameter-free procedure to predict functional modules, and a strategy for finding known cis-regulatory elements that is suitable for consensus scanning without prior knowledge of the allowed extent of degeneracy of the motif. We apply the method to study a large collection of gene expression microarray data in Arabidopsis. We estimate that our co-expression network has ~94% of accuracy, and has topological properties similar to other biological networks, such as being scale-free and having a high clustering coefficient. Remarkably, among the ~300 predicted modules whose sizes are at least 20, 88% have at least one significantly enriched functions, including a few extremely significant ones (ribosome, <it>p</it> < 1E-300, photosynthetic membrane, <it>p</it> < 1.3E-137, proteasome complex, <it>p</it> < 5.9E-126). In addition, we are able to predict cis-regulatory elements for 66.7% of the modules, and the association between the enriched cis-regulatory elements and the enriched functional terms can often be confirmed by the literature. Overall, our results are much more significant than those reported by several previous studies on similar data sets. Finally, we utilize the co-expression network to dissect the promoters of 19 Arabidopsis genes involved in the metabolism and signaling of the important plant hormone gibberellin, and achieved promising results that reveal interesting insight into the biosynthesis and signaling of gibberellin.</p> <p>Conclusions</p> <p>The results show that our method is highly effective in finding functional modules from real microarray data. Our application on Arabidopsis leads to the discovery of the largest number of annotated Arabidopsis functional modules in the literature. Given the high statistical significance of functional enrichment and the agreement between cis-regulatory and functional annotations, we believe our Arabidopsis gene modules can be used to predict the functions of unknown genes in Arabidopsis, and to understand the regulatory mechanisms of many genes.</p

    A Network-Based Approach for Improving Annotation of Transcription Factor Functions and Binding Sites in Arabidopsis thaliana

    No full text
    Transcription factors are an integral component of the cellular machinery responsible for regulating many biological processes, and they recognize distinct DNA sequence patterns as well as internal/external signals to mediate target gene expression. The functional roles of an individual transcription factor can be traced back to the functions of its target genes. While such functional associations can be inferred through the use of binding evidence from high-throughput sequencing technologies available today, including chromatin immunoprecipitation sequencing, such experiments can be resource-consuming. On the other hand, exploratory analysis driven by computational techniques can alleviate this burden by narrowing the search scope, but the results are often deemed low-quality or non-specific by biologists. In this paper, we introduce a data-driven, statistics-based strategy to predict novel functional associations for transcription factors in the model plant Arabidopsis thaliana. To achieve this, we leverage one of the largest available gene expression compendia to build a genome-wide transcriptional regulatory network and infer regulatory relationships among transcription factors and their targets. We then use this network to build a pool of likely downstream targets for each transcription factor and query each target pool for functionally enriched gene ontology terms. The results exhibited sufficient statistical significance to annotate most of the transcription factors in Arabidopsis with highly specific biological processes. We also perform DNA binding motif discovery for transcription factors based on their target pool. We show that the predicted functions and motifs strongly agree with curated databases constructed from experimental evidence. In addition, statistical analysis of the network revealed interesting patterns and connections between network topology and system-level transcriptional regulation properties. We believe that the methods demonstrated in this work can be extended to other species to improve the annotation of transcription factors and understand transcriptional regulation on a system level

    A Network-Based Approach for Improving Annotation of Transcription Factor Functions and Binding Sites in <i>Arabidopsis thaliana</i>

    No full text
    Transcription factors are an integral component of the cellular machinery responsible for regulating many biological processes, and they recognize distinct DNA sequence patterns as well as internal/external signals to mediate target gene expression. The functional roles of an individual transcription factor can be traced back to the functions of its target genes. While such functional associations can be inferred through the use of binding evidence from high-throughput sequencing technologies available today, including chromatin immunoprecipitation sequencing, such experiments can be resource-consuming. On the other hand, exploratory analysis driven by computational techniques can alleviate this burden by narrowing the search scope, but the results are often deemed low-quality or non-specific by biologists. In this paper, we introduce a data-driven, statistics-based strategy to predict novel functional associations for transcription factors in the model plant Arabidopsis thaliana. To achieve this, we leverage one of the largest available gene expression compendia to build a genome-wide transcriptional regulatory network and infer regulatory relationships among transcription factors and their targets. We then use this network to build a pool of likely downstream targets for each transcription factor and query each target pool for functionally enriched gene ontology terms. The results exhibited sufficient statistical significance to annotate most of the transcription factors in Arabidopsis with highly specific biological processes. We also perform DNA binding motif discovery for transcription factors based on their target pool. We show that the predicted functions and motifs strongly agree with curated databases constructed from experimental evidence. In addition, statistical analysis of the network revealed interesting patterns and connections between network topology and system-level transcriptional regulation properties. We believe that the methods demonstrated in this work can be extended to other species to improve the annotation of transcription factors and understand transcriptional regulation on a system level
    corecore